dISPONIBLE A PARTIR Del 15 de mayo

Flujos Gravitativos y sus depósitos (Español)

Instructor

Profesor Carlos Zavala

in-house

Clases teóricas, foros de discusión y evaluación. Los participantes tendrán un plazo máximo de seis meses para completar el curso

nivel medio

Para alumnos graduados

valor

300 USD + IVA (por participante). Consulte por nuestros precios corporativos.

RegIstraCión

Visite nuestro campus virtual

Flujos Gravitativos y sus Depósitos. Aplicado al entendimiento de reservorios.

 

Programa temático

 

1.     Introducción. Los flujos gravitativos en la naturaleza. Materiales elásticos, plásticos y fluidos. Fujos plásticos Bingham y flujos Newtonianos. Coeficiente de fricción interna. La viscosidad del flujo. Flujos dilatantes y pseudoplasticos. Flujos laminares y turbulentos. Flujos subcríticos y supercríticos. Transformaciones de flujo y saltos hidráulicos. Aplicación al análisis de facies. Flujos Newtonianos. Flujos gravitativos de fluidos y flujos gravitativos de sedimentos. Ejemplos de campo y videos ilustrativos (relación actual-fósil).

2.     Flujos gravitativos de fluidos. Diagramas de estabilidad en stream flows. Iniciación del movimiento en flujos diluidos. Flujos desacelerantes y acelerantes. Flujos unidireccionales y bidireccionales (oscilatorios). Flujos combinados. Principales estructuras sedimentarias relacionadas a flujos gravitativos de fluidos. Criterios diagnósticos de identificación en depósitos fósiles. Ejemplos de campo y videos ilustrativos (relación actual-fósil).

3.     Flujos gravitativos de sedimentos. Análisis experimentales. Carga de lecho y carga suspendida. Capacidad y competencia de flujos. Fluctuaciones de flujo. Estructuras sedimentarias relacionadas a flujos gravitativos de sedimentos. Criterios para el reconocimiento de variaciones en la tasa de sedimentación. Ejemplos de análisis de facies en depósitos fósiles.

4.     Flujos gravitativos de alta densidad. Mecanismos de sustentación. Cohesión de la matriz. Presión dispersiva. Escape de agua. Turbulencia. Flujos cohesivos. Flujos hiperconcentrados. Flujos concentrados. Flujos granulares. Flujos fluidizados. Flujos turbiditicos de alta densidad. Carpetas de tracción.

5.     Flujos de fango. El paradigma de la decantación. Evidencias de flujos de fango en depósitos fósiles. Diferentes tipos de flujos de fango (intracuencales y extracuencales). Ejemplos de sistemas actuales y del registro estratigráfico. Reconocimiento de fluctuaciones en la velocidad y concentración en flujos de fango.

6.     Deltas y tipos de flujos relacionados. La clasificación de Bates. Deltas litorales. Deltas de rampa. Deltas tipo Gilbert. Deltas subacuáticos. Partes del delta. Análisis de facies. Alociclos y autociclos en la sedimentación deltaica.

7.     Flujos hiperpícnicos. Flujos hipopícnicos y homopícnicos. Overflows, interflows y underflows. Flujos hiperpícnicos en medios lacustres y marinos. Movimientos de los flujos hiperpícnicos. Reversión de la flotación. Plumas de lofting. Flujos hiperpícnicos y fisiografía. Flujos episódicos y sostenidos. Flujos hiperpícnicos y contenido paleontológico. Facies diagnósticas. Flujos intracuencales y extracuencales. Criterios de diferenciación.

8.     Turbiditas intracuencales. Las facies de Bouma, Lowe, Walker y Mutti. Eficiencia del flujo. Cambios reológicos, transformaciones de flujo y saltos hidráulicos. Consecuencias en las facies resultantes. Sistemas de canales y lóbulos. Criterios de diferenciación entre flujos intracuencales y extracuencales.

9.     Turbiditas extracuencales. Criterios de reconocimiento y análisis. Turbiditas lacustres y marinas. Turbiditas de plataforma. Lóbulos arenosos de plataforma. Topografía y espesor de lóbulos arenosos. Turbiditas de talud. Ejemplos de acumulación. Origen de transient fans. Turbiditas de interior de cuenca. Ejemplos de facies características.

 

Ejercicios y actividades prácticas: La comprensión de diferentes temas se complementará con ejercicios prácticos orientados a aplicar el análisis de facies a la comprensión de reservorios.

Logística docente: Los asistentes pueden seguir las clases durante su tiempo libre, y luego participar dos veces por semana en un foro online con el profesor. El foro está destinado a proporcionar excelentes explicaciones complementarias, discusiones, dibujos en línea y perspectivas para la comprensión de los reservorios.

 

Bibliografía seleccionada

Abouelresh, M.O., and R.M. Slatt. 2011. Shale depositional processes: Example from the Paleozoic Barnett Shale, Fort Worth Basin, Texas, USA. Open Geosciences 3: 398–409. doi: 10.2478/s13533-011-0037-z.

Arnott, R.W.C., and B.M. Hand. 1989. Bedforms, primary structures and grain fabric in the presence of suspended sediment rain. Journal of Sedimentary Petrology 59 (6): 1062–1069.

Bagnold, R.A. 1954. Experiments on a gravity-free dispersion of large solid spheres in a Newtonian fluid under shear. Proceedings of the Royal Society of London A225: 49–63.

Bagnold, R. A. 1962. Auto-suspension of transported sediment: turbidity currents. Proceedings of the Royal Society of London A265: 315–319. 

Baker, M., J.H. Baas, J. Malarkey, R. Silva Jacinto, M. Craig, I. Kane, and S. Barker. 2017. The effect of clay type on the properties of cohesive sediment gravity flows and their deposits. Journal of Sedimentary Research 87: 1176–1195.

Banerjee, I. 1977. Experimental study on the effect of deceleration on the vertical sequence of sedimentary structures in silty sediments. Journal of Sedimentary Petrology 47 (2): 771–783.

Batalla, R.J., C. De Jong, P. Ergenzinger and M. Sala. 1999. Field observations on hyperconcentrated flows in mountain torrents. Earth Surface Processes and Landforms 24: 247–253.

Bates, C., 1953. Rational theory of delta formation. American Association of Petroleum Geologists Bulletin 37: 2119–2162.

Baudin, F., E. Stetten, J. Schnyder, K. Charlier, P. Martinez, B. Dennielou, and L. Droz. 2017a. Origin and distribution of the organic matter in the distal lobe of the Congo deep-sea fan — A Rock-Eval survey. Deep Sea Research Part II: Topical Studies in Oceanography 142: 75–90. https://doi.org/10.1016/j.dsr2.2017.01.008.

Baudin, F., P. Martinez, B. Dennielou, K. Charlier, T. Marsset, L. Droz, and C. Rabouille. 2017b. Organic carbon accumulation in modern sediments of the Angola basin influenced by the Congo deep-sea fan. Deep Sea Research Part II: Topical Studies in Oceanography 142: 64–74. https://doi.org/10.1016/j.dsr2.2017.01.009.

Beverage, J.P., and J.K. Culbertson. 1964. Hyperconcentrations of suspended sediments. Journal of the Hydraulics Division, ASCE 90: 117–128.

Bhattacharya, J.P., and J.A. McEachern 2009. Hyperpycnal rivers and prodeltaic shelves in the Cretaceous seaway of North America. Journal of Sedimentary Research 79: 184–209. https://doi.org/10.2110/jsr.2009.026.

Biscara, L., T. Mulder, P. Martinez, F. Baudin, H. Etcheber, J.M. Jouanneau, and T. Garlan. 2011. Transport of terrestrial organic matter in the Ogooué deep sea turbidite system (Gabon). Marine and Petroleum Geology 28 (5): 1061–1072.

Bouma, A.H. 1962. Sedimentology of some flysch deposits, a graphic approach to facies interpretation. Elsevier, 168 pp.

Costa, J.E. 1984. Physical geomorphology of debris flows. In: J.E. Costa, and P.J. Fleisher (Eds.), Developments and Applications of Geomorphology. Springer, Berlin, pp. 268–317.

Costa, J.E. 1986. Rheologic, geomorphic and sedimentological differentiation of water floods, hyperconcentrated flows and debris flows. In: V.R. Baker, C. Kochel, and P.C. Patton (Eds.), Flood Geomorphology. Wiley-Interscience, New York, pp. 113–122.

Coussot, P., and M. Meunier. 1996. Recognition, classification and mechanical description of debris flows. Earth-Science Reviews 40: 209–227.

Dasgupta, P. 2003. Sediment-gravity flow — The conceptual problems. Earth-Science Reviews 62: 265–281.

Heezen, B.C., and C.D. Hollister. 1964. Deep sea current evidence from abyssal sediments. Marine Geology 1: 141–174.

Hollister, C.D. 1967. Sediment Distribution and Deep Circulation in the Western North Atlantic (Ph.D. dissertation). Columbia University, New York, 467 pp.

Kuenen, P.H., and C.I. Migliorini. 1950. Turbidity currents as a cause of graded bedding. The Journal of Geology 58: 91–127.

Lash, G.G. 2016. Hyperpycnal transport of carbonaceous sediment — Example from the Upper Devonian Rhinestreet Shale, western New York, USA. Palaeogeography, Palaeoclimatology, Palaeoecology 459: 29–43. https://doi.org/10.1016/j.palaeo.2016.06.035.

Li, J., J. Yuan, C. Bi, and D. Luo. 1983. The main features of the mudflows in Jiang-Jia Ravine. Ztschrift für Geomorphologie 27: 325–341.

Lowe, D.R. 1982. Sediment gravity flows: II. Depositional models with special reference to the deposits of high-density turbidity currents. Journal of Sedimentary Petrology 52: 279–297.

Middleton, G.V. 1967. Experiments on density and turbidity currents: III. Deposition of sediment. Canadian Journal of Earth Sciences 4: 475–505.

Middleton, G.V., and M.A. Hampton. 1973. Sediment gravity flows: Mechanics of flow and deposition. In: G.V. Middleton, and A.H. Bouma (Eds.), Turbidites and Deep-Water Sedimentation. SEPM, Anaheim, California Short Course Notes, 38 pp.

Migliorini, C.I. 1944. Sul modo di formazione dei complessi tipo macigno. Bollettino della Società Geologica Italiana 62: 48–49.

Mohrig D., K.X. Whipple, M. Hondzo, C. Ellis, and G. Parker. 1998. Hydroplaning of subaqueous debris flows. GSA Bulletin 110: 387–394.

Mulder, T., and E. Chapron. 2011. Flood deposits in continental and marine environments: Character and significance. In: R.M. Slatt, and C. Zavala (Eds.), Sediment Transfer from Shelf to Deep Water — Revisiting the Delivery System. AAPG Studies in Geology 61: 1–30. doi:10.1306/13271348St613436.

Mulder, T., and J. Alexander. 2001. The physical character of subaqueous sedimentary density flows and their deposits. Sedimentology 48: 269–299.

Mulder, T., and J.P.M. Syvitski. 1995. Turbidity currents generated at river mouths during exceptional discharges to the world oceans. Journal of Geology 103: 285–299.

Mulder, T., and P. Cochonat. 1996. Classification of offshore mass movements. Journal of Sedimentary Research 66: 43–57.

Mulder, T., J.P.M. Syvitski, S. Migeon, J.C. Faugéres, and B. Savoye. 2003. Marine hyperpycnal flows: Initiation, behavior and related deposits. A review. Marine and Petroleum Geology 20: 861–882

Mutti, E. 1992. Turbidite Sandstones. AGIP—Istituto di Geologia Università di Parma, 275 pp.

Mutti, E., G. Davoli, R. Tinterri, and C. Zavala. 1996. The importance of ancient fluvio-deltaic systems dominated by catastrophic flooding in tectonically active basins. Memorie di Scienze Geologiche, Universita di Padova 48: 233–291.

Mutti, E., N. Mavilla, S. Angella, and L.L. Fava. 1999. An introduction to the analysis of ancient turbidite basins from an outcrop perspective. AAPG Continuing Education Course Note 39: 1–98.

Mutti, E., R. Tinterri, G. Benevelli, D. Di Biase, and G. Cavanna. 2003. Deltaic, mixed and turbidite sedimentation of ancient foreland basins. Marine and Petroleum Geology 20: 733–755.

Nakajima, T. 2006. Hyperpycnites deposited 700 km away from river mouths in the Central Japan Sea. Journal of Sedimentary Research 76 (1): 59–72.

Nemec, W. 2009. What is a hyperconcentrated flow? Conference: IAS Annual Meeting, Alghero (Sardinia), 20–23 September 2009. Abstracts volume.

Otharán, G., C. Zavala, M. Arcuri, D. Marchal, G. Köhler, M. Di Meglio, and A. Zorzano. 2018. The role of fluid mud flows in the accumulation of organic-rich shales. The Upper Jurassic–Lower Cretaceous Vaca Muerta Formation, Neuquén Basin, Argentina. In: Congreso de Exploración y Desarrollo de Hidrocarburos, 10th, Simposio de Recursos No Convencionales, Extended abstracts, 61–90. Mendoza.

Otharán, G., C. Zavala, M. Arcuri, M. Di Meglio, A. Zorzano, D. Marchal, and G. Köhler. 2020. Análisis de facies de fangolitas bituminosas asociadas a flujos fluidos de fango. Sección inferior de la Formación Vaca Muerta (Tithoniano), Cuenca Neuquina central, Argentina. Andean Geology, 47 (2). http://dx.doi.org/10.5027/andgeo%25x.

Pettijohn, F.J. 1975. Sedimentary Rocks, Third Edition. Harper and Row, New York, 628 pp.

Pierson, T. C. 2005. Hyperconcentrated flow — Transitional process between water flow and debris flow. In: M. Jakob, and O. Hungr (Eds.), Debris-Flow Hazards and Related Phenomena. Chapter 8: 159–202. Springer Berlin Heidelberg.

Pierson, T.C., and J.C. Costa. 1987. A rheologic classification of subaerial sediment-water fows. In: J.E. Costa, and G.F. Wieczorek (Eds.), Debris Flows/Avalanches: Process, Recognition and Mitigation. GSA Reviews in Engineering Geology 7: 1–12.

Pierson, T.C., and K.M. Scott. 1985. Downstream dilution of a lahar: Transition from debris flow to hyperconcentrated streamflow. Water Resources Research 21 (10): 1511–1524.

Prior, D.B., B.D. Bornhold, and M.W. Johns. 1984. Depositional characteristics of a submarine debris flow. Journal of Geology 29: 707–727.

Sanders, J.E. 1965. Primary sedimentary structures formed by turbidity currents and related sedimentation mechanisms. In: G.V. Middleton (Ed.), Primary Sedimentary Structures and their Hydrodinamic Interpretation. SEPM Special Publications 12: 192–219.

Schieber, J., J.B. Southard, and A. Schimmelmann. 2010. Lenticular shale fabrics resulting from intermittent erosion of water-rich muds: interpreting the rock record in the light of recent flume experiments. Journal of Sedimentary Research 80: 119–128. doi:10.2110/jsr.2010.005.

Schumm, S. A. 1977. The Fluvial System. New York, Wiley, 338 pp.

Smith, G.A., 1986. Coarse grained nonmarine volcaniclastic sediment terminology and depositional process. GSA Bulletin 97: 1–10.

Smith, G.A., and D.R. Lowe. 1991. Lahars volcano hydrologic events and deposition in the debris flow hyperconcentrated flow continuum. Sedimentation in Volcanic Settings. SEPM Special Publication 45: 59–70.

Soyinka, O.A., and R.M. Slatt. 2008. Identification and microstratigraphy of hyperpycnites and turbidites in Cretaceous Lewis Shale, Wyoming. Sedimentology 55 (5): 1117–1133. https://doi.org/10.1111/j.1365-3091.2007.00938.x.

Sparks, R.S.J., R.T. Bonnecaze, H.E. Huppert, J.R. Lister, M.A. Hallworth, J. Phillips, and H. Mader. 1993. Sediment-laden gravity currents with reversing buoyancy. Earth and Planetary Science Letters 114: 243–257.

Sumner, E.J., L.A. Amy, and P.J. Talling. 2008. Deposit structure and processes of sand deposition from decelerating sediment suspensions. Journal of Sedimentary Research 78 (8): 529–547.

Syvitski, J.P.M., S.D. Peckham, R.D. Hilberman, and T. Mulder. 2003. Predicting the terrestrial flux of sediment to the global ocean: A planetary perspective. Sedimentary Geology 162: 5–24.

Weirich, F. 1989. The generation of turbidity currents by subaerial debris flows. California. GSA Bulletin 101: 278–291.

Wilson, R., and J. Schieber. 2014. Muddy prodeltaic hyperpycnites in the Lower Genesee Group of Central New York, USA: Implications for mud transport in epicontinental seas. Journal of Sedimentary Research 84: 866–874. https://doi.org/10.2110/jsr.2014.70.

Wilson, R.D., and J. Schieber. 2015. Sedimentary facies and depositional environment of the Middle Devonian Geneseo Formation of New York, USA. Journal of Sedimentary Research 85 (11): 1393–1415. https://doi.org/10.2110/jsr.2015.88.

Zavala, C. 2020. Hyperpycnal Flows and Deposits. Journal of Palaeogeography. (2020) 9:17, 1-21. Beijing, China. https://doi.org/10.1186/s42501-020-00065-x

Zavala, C., and M. Arcuri. 2016. Intrabasinal and extrabasinal turbidites: Origin and distinctive characteristics. Sedimentary Geology 337: 36–54. https://doi.org/10.1016/j.sedgeo.2016.03.008.

Zavala, C., and S.X. Pan. 2018. Hyperpycnal flows and hyperpycnites: Origin and distinctive characteristics. Lithologic Reservoirs 30 (1): 1–27.

Zavala, C., J. Ponce, D. Drittanti, M. Arcuri, H. Freije, and M. Asensio. 2006. Ancient lacustrine hyperpycnites: A depositional model from a case study in the Rayoso Formation (Cretaceous) of west-central Argentina. Journal of Sedimentary Research 76: 41–59.

Zavala, C., L. Blanco Valiente, and Y. Vallez. 2008. The origin of lofting rhythmites. Lessons from thin sections. AAPG Hedberg Conference “Sediment Transfer from Shelf to Deepwater — Revisiting the Delivery Mechanisms”. March 3–7, 2008—Ushuaia-Patagonia, Argentina (http://www.searchanddiscovery.com/pdfz/documents/2008/jw0807zavala/images/jw0807zavala.pdf.html).

Zavala, C., M. Arcuri, and L. Blanco Valiente. 2012. The importance of plant remains as a diagnostic criteria for the recognition of ancient hyperpycnites. Revue de Paléobiologie 11: 457–469.

Zavala, C., M. Arcuri, H. Gamero Diaz, and C. Contreras. 2007. The composite bed: A new distinctive feature of hyperpycnal deposition (abs.): AAPG Annual Convention and Exhibition, v. 16, p. 157.

Zavala, C., M. Arcuri, H. Gamero, C. Contreras, and M. Di Meglio, 2011. A genetic facies tract for the analysis of sustained hyperpycnal flow deposits. In: R.M. Slatt, and C. Zavala (Eds.), Sediment Transfer from Shelf to Deep Water — Revisiting the Delivery System. AAPG Studies in Geology, Vol. 61, pp. 31–51.